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Chapter 1 

Introduction 
 

Compressed sensing or compressive sampling (CS) is a signal processing or image 

processing technique for efficiently acquiring and reconstructing a signal or image from a 

few samples or measurements  by solving an  underdetermined system. According to the CS 

theory, one can reconstruct certain signals and images from very less number of samples or 

measurements than traditional methods would require by the Nyquist rate [1]. To make it 

happen, it relies on two principles:  sparsity and incoherence, meaning the signal is either 

sparse or compressible in some transform domain and that it should be acquired or sensed 

with a set of bases that are completely different with those required for its representation. 

The fundamental idea of CS is to recover a sparse signal from a few linear measurements by 

Convex Optimization or Greedy Algorithms. There are some extremely common cases where 

data collection is a major problem for a variety of reasons. Like, the number of sensors may 

be limited or the measurements may be extremely expensive or the sensing process may be 

too slow. Therefore, one can collect only a few samples in a limited period of time like in the 

Magnetic Resonance Imaging (MRI). 

The CS theory can be implemented in many applications such as- single pixel camera, MRI 

image reconstruction, channel estimation in wireless communication, radar imaging. 

Magnetic Resonance Imaging (MRI) is an essential medical imaging tool for soft tissue 

imaging. It has the ability to create an image without the use of ionizing radiations. Images 

may be acquired in multiple planes (Axial, Sagittal, Coronal, or Oblique) without 

repositioning the patient [2].  

Traditionally, the MRI data acquisition process is designed to meet the Nyquist criterion, 

which depends on the resolution and field of view (FOV). For high resolution we require 

more number of samples. If the Nyquist criterion is violated, artefacts due the linear 

reconstruction may exist. Typically, getting a single MR image involves collection of a series 

of data frames. To meet these requirements, we need a large amount of data and whole data 

acquisition process becomes a time consuming process. It is also not possible to increase the 

speed of data acquisition arbitrarily due to some instrumental and physiological constraints. 

In addition, movement of body parts during lengthy signal acquisition would cause 

unrecoverable artifacts in the reconstructed images. The only way to reduce the time of whole 

data acquisition is to acquire fewer amounts of data and reconstruct the MR image from the 

limited data without degrading the image quality.  

In MRI, data acquisition process is done in the k-space or frequency domain. These images 

are also compressible in some transform domain. Due to linear combination of acquired data 

in frequency domain and transform sparsity of MR images, MRI naturally fits to the two key 

requirements imposed by the compressed sensing reconstruction of MRI. 
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Compressed sensing research was initiated in 2006 by two scientists, namely by Donoho [3] 

and by Candes [1]. Within a decade, it has become the most attractive research area in 

astronomy, radar imaging, signal processing, and medical imaging and so on.  To define the 

CS problem, consider x  be a sparse signal of length n  which is under sampled by a 

measurement matrix A and y  indicate the observed data, where , ,n n m m  x A y  

and .m n  Based on the knowledge of measurement matrix A  and measured signal y  we 

have to recover the sparse signal x . This problem can be solved by L0-norm minimization i.e. 

0minimize

subject to 

x

y - Ax

 
 

where ԑ is the error term and||.||0counts the number of nonzero elements. 

Solving the above problem is impractical as it is an NP-hard problem. One way to solve this 

problem approximately is by using the L1-norm instead of the L0-norm. Thus the above 

problem can be represented as- 

1minimize

subject to  

x

y Ax

 
 

where 1 | . | | . | ...  x  .The solution of L1-norm problem gives the exact original signal when 

x  is sufficiently sparse. Problem (1.1) can also be solved by using greedy techniques, like the 

matching pursuit (MP) [11], the orthogonal matching pursuit (OMP) [12], etc. 

1.1. CS-MRI Problem Formulation 

CS problem for compressible signals: 

Suppose a signal nx     is dense in time domain but it has a sparse representation when it 

is expressed with a proper basis n nΨ  . And my  is the measured signal by a sensing 

waveform matrix m nΦ  , where m n  [9, 10]. 

 

 

 

 

 

 

For the accurate reconstruction of the signal x , the representation basis Ψ and measurement 

matrix Φmust be incoherent as much as possible. Then the problem can be represented as- 

1minimize 

subject to  

Ψx

y ΦΨα

 
 

 

Fig. 1.1: Matrix representation of compressed sensing 

(1.2) 

(1.1) 

(1.3) 
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where   is some error constant. 

CS-MRI with greedy approximation: 

Problem (1.3) can also be written as- 

2
2

0

minimize

subject to || || L

y - ΦΨα

Ψx

 

 

where L  indicates the number of columns in the m n matrix ΦΨ to be used to represent the 

sparse coefficient vector α . Generally, MR image is sparse in transform domain like the 

DCT, the wavelet, etc. For CSMRI the above problem can be rewritten as- 

2
2

0

minimize

subject to || ||

u

L

y - F x

Ψx

 
 

where x  is the MR image,   y  is the corresponding measured k-space data,  Ψx  are wavelet 

coefficients, and uF is the m n  undersampled Fourier Transform matrix.  To solve the 

above problem Mallat and Zhang   have proposed a greedy algorithm known as the Matching 

Pursuit (MP) algorithm [11]. The algorithm iteratively selects a set of atoms from a 

dictionary for best sparse representation of the given signal.  Pati et al. proposed an extension 

of MP algorithm known as the Orthogonal Matching Pursuit (OMP) algorithm [11]. The main 

difference is that in the OMP algorithm in each iteration coefficients are updated by 

orthogonal projection of the signal on the selected atoms of the dictionary. 

CS-MRI with L1-norm minimization: 

In case of CSMRI, MR images have sparse representation in transform domains like the 

DCT, the wavelet transform, etc.  Here, the problem can be represented as- 

1minimize

subject to  u

Ψx

y F x

 
 

This problem can be solved by different L1-minimization algorithms. A few important 

landmark works in the CSMRI are cited below. 

The Primal Dual Interior Point Method (PDIPM) is the classical method for the solution of 

the L1-minimization problem. But the number of computation is too high in PDIPM. In the 

work of Daubechies [4], the author has introduced an iteratively shrinkage algorithm known 

as the Iterative Shrinkage Thresholding (IST) to solve the L1- minimization problem. At each 

iteration, the objective function is shrunk by a thresholding function. Michael Lustig et al. [6] 

tried to efficiently under-sample the MRI data and reconstruct the MR image from under-

sampled data. They have designed an efficient under-sampling pattern based on estimated 

PDF. Finally, for reconstruction, the Nonlinear Conjugate Gradient (NCG) algorithm is used 

for simplicity. Koh et al. [5] has solved the L1-minimization problem using the Truncated 

Newton Interior Point Method (TNIPM). The TNIPM is much faster than the PDIPM, 

because in TNIPM a pre-conditioner is used which approximates the TA A  by  I  where I  is 

(1.6) 

(1.4) 

(1.5) 
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the identity matrix and   is a constant term which simplifies the problem and hence reduces 

the number of computations. Mario A.T. Figgueiredo et al. [7] have proposed a new gradient 

projection algorithm known as the Gradient Projection for Sparse Reconstruction (GPSR) to 

solve the compressed sensing and other inversion problem. The GPSR is relatively faster 

algorithm than the previous algorithms. 

CS-MRI field has mainly two research directions. One is how efficiently MRI data can be 

acquired and other is how fast reconstruction can be done without compromising the image 

quality. 

1.2. Objectives 

The various objectives that were achieved during the implementation of the project are: 

I. Study of the state-of-the-art CSMRI algorithms to explore new algorithms that could 
establish trade-off between faster convergence and computational complexity. 

II. Development of High Throughput CS-MRI Reconstruction Techniques. 

III. Development of efficient Multi-slice MR image reconstruction algorithms using 
combination of interpolation and compressed sensing. 

1.3. Scope of the Work 

Today MRI is an essential medical imaging tool burdened by an inherently slow data 

acquisition process. It is recommended because MRI does not use any ionizing radiation. In 

case of dynamic MRI a small amount of measurements can be possible within a short period 

of time. The slow imaging speed in MRI is a challenge for dynamic MRI like cardiac 

imaging in which a small number of samples is recoded per heart beat. Thus to reduce the 

scan time, we have to highly undersample the MRI data (k-space) and reconstruct the MR 

image without degrading the image quality from few undersampled data. The application of 

compressed sensing (CS) to MRI has the potential for significant scan time reduction which 

will improve patient care and reduce costs. 

1.4. Organisation of the Report 

The rest of the report is organized into six chapters, each of them giving a detailed 

description about various ingredients of the project. 

Chapter-2 discusses about working process of MRI. This chapter is about the data acquisition 

technique i.e. different types of RF pulse sequences for various imaging technique. 

Chapter-3 mainly deals with the concept of compressed sensing, its application in magnetic 

resonance image acquisition and the detailed description about the proposed random variable 

density undersampling pattern. 

Chapter-4 discusses about the L1-minimization algorithms, their application in MR image 

reconstruction and the detailed description about the proposed high throughput MR image 

reconstruction method. 
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Chapter-5 is about the wavelet tree structure and implementation of group sparsity of wavelet 

coefficient as a regularization term with TV-L1-L2 model of CSMRI. 

Chapter-6 discusses about the interpolated compressed sensing theory and the detailed 

description about the proposed efficient interpolation based 2D multi-slice MR image 

reconstruction technique. 

Chapter 7 is the concluding chapter of the report that deals with success and the future 

prospects that can be made in this area. 
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Chapter 2 

Magnetic Resonance Imaging 
2.1. Introduction 

Magnetic resonance imaging (MRI), nuclear magnetic resonance imaging (NMRI), or 

magnetic resonance tomography (MRT) is a medical imaging technique. MRI uses non-

ionizing radiation to generate image. In MRI, the scanner forms a strong magnetic field 

around the area to be imaged and apply RF pulses when the RF pulse is switched off the body 

emits back the energy which it absorbs from the RF pulse. This radiation is picked up by a 

receiver coil, which is then used to construct the image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A large proportion of our body is made up of water molecule which contains Hydrogen 

atoms.  The nuclei of Hydrogen atoms have only one proton and they behave like little bar 

magnets because they are charged and spin about themselves. When these little bar magnets 

are placed in a strong magnetic field they align with it and rotate around the axis of the field 

in a movement which is known as precession or precession frequency. The stronger the 

magnetic field higher the precession frequency. If we send a RF pulse at the range of 

precession frequency then they can absorb this radiation and pick up energy and go from a 

lower to a higher energy level, which is said to be at resonance. When the RF pulse is turned 

off this energy is just handed over to their surroundings by emitting back the radiation. They 

re-emit radiation at a different rate because each tissue of the body has different chemical 

composition and physical state. MRI uses this signal from the nuclei of hydrogen atoms for 

image generation [Chapter 14-15, 1], [2]. 

 

Fig.2.1. MRI Scanner 
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2.2. How does MRI work? 

The patient is placed in a static magnetic field. Hydrogen protons within the patient's body 

align to the magnetic field.  A Radio Frequency (RF) pulse is emitted from the scanner, of a 

specific range of frequencies.  If the emitted frequencies are in the range of procession 

frequency of Hydrogen protons then Hydrogen protons absorb the energy from the RF pulse. 

Generally RF pulses are applied for a small duration in the range of millisecond. When RF 

pulses are turned off the Hydrogen protons re-emits the energy according to their surrounding 

environments. Receiver coil receives this re-emitted signal and corresponding MR image is 

generated. 

Suppose we want to make cross-sectional images of the human body. The excitation pulse is 

therefore delivered only to the frequency of that slice which we want to image and not to the 

whole body. For this region three different gradients are used namely, Slice Selection 

Gradient, Frequency Encode Gradient and Phase Encode Gradient. Gradients are additional 

magnetic fields that are generated by gradient coils and add to or subtract from the main 

magnetic field. Depending on their position along the gradient, protons are temporarily 

exposed to magnetic fields of different strength and hence differ in their precessional 

frequencies [2]. 

 

2.2.1. Different Gradients 

The Slice Selection Gradient (SSG) determines the slice of tissue to be imaged in the body 

together with RF excitation pulse. To do this the Slice Selection Gradient (GSS) is applied 

perpendicular to the desired slice plane. This is added to B0, and the protons present a 

resonance frequency variation proportionate to GSS. An RF wave is simultaneously applied, 

with the same frequency as that of the protons in the desired slice plane. This causes a shift in 

the magnetization of only the protons on this plane. As none of the hydrogen nuclei located 

outside the slice plane are excited, they will not emit a signal. 

The Frequency Encode Gradient (FEG), also known as the readout gradient, is applied in a 

direction perpendicular to the Slice Selection Gradient. Once the signal from the slice has 

been isolated, the remaining two in-plane dimensions need to be encoded (in this case the 'x' 

and 'y' directions). One of the directions (say 'y' direction) is encoded by changes of 

frequency. 

Suppose a gradient is applied in the y-direction to change frequency. However, this would not 

be sufficient to uniquely describe frequency to each column and row of pixels. For the last 

dimension the signal is encoded in terms of phase. It is applied before the frequency encode 

gradient and after the slice encode gradient, along the third perpendicular axis [2]. 
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2.3. k-Space 

Data from the signals is stored in a mathematical area known as k-space which is equivalent 

to a Fourier plane.  k-space  has  two  axis  with  the  horizontal  axis  (kx)  representing the 

frequency information and the vertical axis (ky) the phase information. To get the MR image 

from a k-space data requires a 2D inverse Fourier Transform. The general way to fill the k-

space is to use a line-by-line rectilinear trajectory. One line of k-space is fully acquired at 

each excitation. Between each repetition, there is a change in phase-encoding-gradient 

strength, corresponding to a change in ky-coordinate. This allows filling of all the lines of k-

space from top to bottom.  Centre region of the k-space contain structural information of the 

image and periphery contain the information about the resolution of the image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.2: Gradient Pulse sequences in MRI 

 

Fig. 2.3: A typical k-space and its corresponding MR Image 
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2.4. Imaging Parameters 

2.4.1. Relaxation Time 

The term relaxation means that the spins are relaxing back into their lowest energy state or 

back to their equilibrium state. Once the radio frequency (RF) pulse is turned off, the protons 

will have to realign with the axis of the B0 magnetic field and give up all their excess energy 

[2]. 

T1 Relaxation Time: 

T1 is called the longitudinal relaxation time because it refers to the time it takes for the spins 

to realign along the longitudinal axis. T1 is also called the spin-lattice relaxation time because 

it refers to the time taken for the spins to give the energy they obtained from the RF pulse 

back to the surrounding lattice in order to go back to their equilibrium state i.e. recovery of 

longitudinal orientation. T1 Relaxation Time refers to interval where 63 % of longitudinal 

magnetization is recovered. 

T2 Relaxation Time: 

T2 relaxation time refers to the progressive dephasing of spinning dipoles following the 900 

pulse as seen in a spin-echo sequence due to tissue-particular characteristics. This is 

alternatively known as spin-spin relaxation i.e. loss of transverse magnetization. T2 

Relaxation Time refers to interval where only 37% of original transverse magnetization is 

present. 

 

 

 

 

 

 

 

 

 

 

2.4.2. Repetitions Time 

The repetition time or (TR) is the time from the application of an excitation pulse to the next 

pulse. It determines how much longitudinal magnetization recovers between each pulse. It is 

measured in milliseconds. 

 

 

(a) 
 

(b) 

Fig. 2.4: (a) Recovery of longitudinal magnetization, and (b) loss of transverse magnetization 
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2.4.3. Echo Time 

The echo time or TE refers to time between the application of radiofrequency excitation pulse 

and the peak of the signal induced in the coil. It is measured in milliseconds. 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. Image Contrast 

2.5.1. T1-weighted  
Images with contrast that is mainly determined by T1 are called T1-weighted images. Tissues 

with a short T1 appear bright because they regain most of their longitudinal magnetization 

during the TR interval and thus produce a stronger MR signal. Tissues with a long T1 appear 

dark because they do not regain much of their longitudinal magnetization during the TR 

interval and thus produces a weaker MR signal. 

 

2.5.2. T2-weighted  
Images with contrast that is mainly determined by T2 are called T2-weighted images. Tissues 

with a short T2 appear dark on T2-weighted images and tissues with a longT2 appear bright 

on T2-weighted images. Table 2.1 shows different types of tissue brightness in T1 and T2-

weighted images. 

 

2.5.3. PD-weighted  
A proton density or PD -weighted image depends on the number of precessing hydrogen 

protons. A very long TR is selected to give neither a T1 nor T2-weighted image. The 

difference in the signals received from different tissues depends only on the number, or 

density, of hydrogen atoms. Fig. 2.1 shows different brain MR images with T1, T2 and PD. 

 

 

 

Fig. 2.5: Repetition time and Echo Time 
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Tissue T1-weighted image T2-weighted image 

Fat Bright Bright 

Tumour Dark Bright 

Inflammatory tissue Dark Bright 

Muscle Dark Dark 

Compact bone Dark Dark 

Connective tissue Dark Dark 

Aqueous liquid Dark Bright 

Hyaline cartilage Bright Bright 

Fibrous cartilage Dark Dark 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6: Different types of MR images. From left to right T1, T2 and PD-weighted MR images. 

Table 2.1: Signal Intensities of Different Tissues on T1-and T2-weighted 
Images. 
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Chapter 3 

Basics of CSMRI and Design of a Practical 
Undersampling Pattern  

3.1. Introduction 

Sensing and compression of data are the two very common processes in modern day life. 

According to the Nyquist criterion, a signal is sampled /sensed at least at a rate equal to twice 

the maximum frequency of the signal for accurate reconstruction [1]. This results in a huge 

amount of data which makes it difficult for further processing, memory shortage for data 

storage, bandwidth problem for data transmission, and so on. 

The solution of this problem is data compression. It is found that most of the natural signals 

and images can be represented in some transform domain where it is sparse or compressible. 

It means that in the transform domain only a few coefficients are significantly large in 

magnitude and contain the most of the information and remaining coefficients contain less or 

no information. By keeping only those few large coefficients, we can reconstruct the original 

signal /image without significant loss of information. Data compression is very common in 

image, audio, video compressions; mobile, radar communications, etc. Compression solves 

the problem of data storage and data transmission but still we have to acquire a large amount 

of data. 

Few years ago, researchers in the signal/image processing community found that data 

compression can be directly performed during data acquisition process itself. This new data 

acquisition paradigm is known as the compressed sensing. The compressed sensing is the 

combination of two steps i.e. data acquisition and encoding of the data in a single step. Using 

compressed sensing the number of samples needed for accurate reconstruction of signal/ 

image is much smaller than the traditional Nyquist sampling criterion. Thus, it also reduces 

the time required for whole data acquisition process. It is very much helpful in those cases 

where data acquisition is the major problem like in the Magnetic Resonance Imaging (MRI) 

[1, 2]. 

3.2. Requirements for the CS 

The two main requirements for the application of compressed sensing is - 

1. The signal or image must be sparse or has a sparse representation in some transform 

domain i.e. the signal/ image must be compressible. 

2. Aliasing artefacts due to under sampling must be incoherent with the sparse representation 

domain. 

3.2.1. Sparsity 

For the application of compressed sensing signal must be either sparse or compressible in a 

transform domain. Generally, natural signals / images are not sparse. But they have a sparse 
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representation in some transform domain having a basis set Ψ  i.e. suppose x  is an image 

which is dense in the spatial domain and but has a sparse representation when projected on to 

Ψ (like the DCT, the wavelet, etc.), i.e. Tα Ψ x , where nx  , n nΨ  and nα   [3]. 

 

3.2.2. Incoherence 

For accurate reconstruction of the signal or image from compressively sensed data, the data 

acquisition or sensing bases Φ must be incoherent with the sparse representation bases Ψ . 

Suppose a signal or image my  is acquired with m nΦ  , i.e. y Φx . Then for accurate 

reconstruction of x  from the undersampled data y , Φ must be incoherent with Ψ . The 

mutual coherence between Φ and Ψ can be measured as- 

 
1 ,

, ma , x | |k j
k j n

n  
 

Φ Ψ  

According to the linear algebra  , [1, ]n Φ Ψ . If Φ and Ψ  contain correlated elements 

then incoherence is small. For accurate compressed sensing reconstruction with less aliasing 

artifacts incoherency between Φand Ψ should large be as much as possible [3]. 

 

3.2.3. Restricted Isometry Property (RIP) 

The main task in the compressed sensing is to transform the ( 1)n -signal x  to the ( 1)m - 

measurement y by using proper measurement matrix Φ. Candès and Tao proposed a 

condition for the measurement matrix, A ΦΨ  known as the restricted isometry property 

(RIP). Assuming that x  is s -sparse, i.e. x Ψα  then A  guarantees reconstruction or satisfies 

the RIP of order s , where s n , if their exists an isometry constant 0 1s  , such that for all 

s-sparse vector α - 

   2 2 2
2 2 21 1s s    α Aα α       

s is the smallest number that satisfies the equation (3.2) .  Orthogonal matrix has 0s  for 

all s . 1s   allows for reconstruction of any signal x .  If 1s  the sampling matrix Φ  has 

a large probability to accurately reconstruct the signal x . The isometry constant s of a given 

matrix is hard to find, but there are some known bounds for s  of random matrix [3]. 

 

 

 

 

(3.1) 

(3.2) 



Page | 15 
 

3.3. Goal of compressed sensing 

Consider a finite length, one-dimensional, discrete time signal nx  . Compressed sensing 

claims that from m  random measurements where m n  one can perfectly reconstruct the 

original signal x , i.e. if the measured signal y Φx , then one can reconstruct the 

approximation of the original signal x  from the knowledge of y  and Φ. In general x  is 

dense in time domain but sparse in some transform domain with proper basis Ψ  i.e. x Ψα  , 

where n nΨ  , nα  and α  is sparse. Then the measured signal y  can be represented as -

 y Φx ΦΨα  [3]. 

 

3.4. Compressed Sensing in MRI 

In MRI data acquisition presses is very slow which is mainly limited by some physical 

(gradient amplitude, slew rate) and physiological (nerve stimulation) constraints. The goal of 

compressed sensing MRI research is to reduce the amount of acquired data without much 

degradation in the quality of image reconstruction. 

Image reconstruction with compressed sensing is a technique in which less amount of data 

are acquired to reconstruct the image without significant loss of image quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Block diagram representation of CS in MRI 
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3.4.1. The Natural Fit between CS and MRI 

MRI fulfils the key requirements of compressed sensing. At first, the sparsity of the image, 

most of the MR images are approximately sparse in transform domain. As shown in Fig. 

3.2(c), wavelet coefficients of MR image are approximately sparse. The wavelet transform is 

a multi scale representation of the original image. Coarse-scale coefficients of the wavelet 

represent the low resolution image elements and fine-scale coefficients represent the high 

resolution elements. Secondly, the sensing basis must be incoherent with respect to the sparse 

representation basis. In MRI data acquisition is performed in k-space (shown in Fig. 3.2(b)) 

which is nothing but the Fourier transform of the MR image. Now, a strong incoherence also 

exists between the Fourier transform and the wavelet transform. Thus, MRI is naturally fit for 

the application of compressed sensing. Fig. 3.3, demonstrates an example how the CS-MRI 

reconstruction produces undersampling artifacts which are totally incoherent to the wavelet 

transform coefficient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

(a)                                                          (b)                                         (c) 

Fig. 3.2: (a) Original MR image (256x256), (b)k-space of the corresponding MR Image, and 
(c) Wavelet representation of the original MR image. 

   

   

 
Fig. 3.3: (a) A single point in the wavelet domain, (b) the corresponding image domain 
representation, (c) the k-space representation of the image point, (d) the undersampled k-space 
representation, (e) the corresponding image and wavelet domain representations of (d), 
respectively. 

(a) (b) (c) 

(d) (f) (e) 
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3.4.2. Undersampling in k-space 

The data acquisition is the most important part in compressed sensing MRI. The main target 

is how efficiently one can acquire only a few samples for reconstruction of the MR image 

without compromising with the quality of the image. 

An incoherent aliasing artifact, as explained above, is an important criterion for CS 

reconstruction.  Equispaced k-space undersampling creates coherent aliasing artifacts. In 

Fig.3.4, it is clear that uniform k-space sampling produces coherent aliasing artifacts; here it 

is not possible to distinguish between original and its replicas because all are similar. 

But in case of random under-sampling, situation is different. Here the reconstructed image 

contains artifacts but they are incoherent. This type of artifacts can be easily distinguished 

because these are like additive random noise. They appear in the MR Image due to the 

leakage of energy because of undersampling and can be easily removed during the 

reconstruction process by thresholding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 Fig. 3.4: (a) Uniform k-space sampling, (b) MR image from the uniform k-space sampling 
data, (c) Random k-space sampling, and (d) MR Image from the random k-space sampling 
data 
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In MRI, data acquisition process is performed in k-space. Centre region of the k-space 

contains information about gross structure and contrast of the original MR Image, most of the 

information required to produce the MR image. Accordingly, the peripheral region contains 

the spatial resolution information of MR image. Therefore, if the total numbers of samples 

are limited then we have to acquire more samples from the centre region and relatively less 

sample from the periphery. In Fig.3.5 it is clearly shown that the centre region of the k-space 

contains the main information about the corresponding MR image.  Therefore, we apply the 

variable density undersampling where more samples are collected near the centre region and 

accordingly fewer samples from the periphery region [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 3.5: (a) Centre region of a typical k-space, (b) Corresponding MR image from centre 
region of k-space. (c) Peripheral region of a typical k-space, and (d) Corresponding MR 
image from peripheral region of k-space 
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Variable density undersampling Pattern: 

The main aim of the variable undersampling pattern is to collect more samples from the 

centre region of k-space.  Many variable density undersampling patterns are proposed based 

on different estimation techniques, like the Monte Carlo estimation of PDF [1], the variable 

density radial lines, the variable-density Poisson-disc sampling pattern [5], etc. Fig.3.6 shows 

some well known variable density sampling patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Proposed variable density undersampling pattern 

The proposed variable density sampling pattern known as the variable density Poisson disk 

sampling pattern mainly consists of several Poisson Disks arranged concentrically. 

 The Poisson disk generates random points which have following properties- 

1. They are tightly packed together. 

2. They maintain a specified minimum distance between two neighbouring points as shown 

in Fig.3.7(c) 

  

(a)                                                                     (b) 

Fig. 3.6: (a) Variable density undersampling pattern based on the estimated probability 
density function, (b) Radial type variable density undersampling pattern, and (c) variable-
density Poisson-disc undersampling pattern [5]. 

 

(c) 



Page | 20 
 

In Poisson disk, at first a grid is generated such that every cell contains at most one sampling 

point. If points are at least distance r  from each other, then cell size must be 2r . Therefore 

no two neighbouring points are too close. 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 3.8, it is clear that points in the Poisson Disk sampling pattern are purely random in 

nature i.e. they contain the randomness property but also keep a minimum distance between 

two neighbouring points 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     (a)                                               (b)                                    (c) 

Fig.3.7: (a) Uniform sampling pattern, (b) Random sampling pattern, and (c) Poisson Disk 
sampling pattern 

 

(a)                                                  (b)                                        (c) 

Fig. 3.8: (a), (b), and (c) are the Poisson disks with decreasing minimum distance 
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But for efficiently sampling the k-space data we need variable density sampling pattern. Fig. 

Fig. 3.9 (a) shows a special variable density sampling pattern sampling pattern, namely, the 

variable density Poisson disk sampling pattern, which contains several Poisson disks. The 

disk near to the centre region contains relatively smaller minimum distance and accordingly 

disk in the periphery contain relatively larger minimum distance. The variation of minimum-

distance from centre to periphery is approximately exponential type. In the proposed variable 

density Poisson disk undersampling pattern, N random points are generated in such a way 

that two neighbouring points are not too close i.e. always maintains a minimum distance 

(MD) between them. To implement variable density sampling, ensembles of concentric 

Poisson disks with varying MD are considered. A Poisson disk at the centre would have the 

smallest MD which may be fixed as follows. The variation of MD from the centre to the 

periphery is approximately exponential as shown in Fig.3.9 (b). 

For comparisons, design of another two variable density sampling patterns are shown in the 

same way as followed for the variable density Poisson disk sampling pattern, namely, the 

variable density random sampling pattern and the variable density Gaussian sampling pattern 

shown in Fig.3.10. 

 

 

 

 

 

 

 

 

 

 

(b) 

 

(a) 

Fig. 3.9: (a) The proposed variable density Poisson disk undersampling pattern, and (b) the 
variation of the minimum distance of each Poisson disk with respect to distance from centre 

 

                   (a)                                             (b)   

Fig.3.10: (a) The variable density Gaussian undersampling pattern, and (b) the variable 
density random undersampling pattern 
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3.6. Experimental results 

Experimental setup: 
Numerous experiments have been conducted to show the superiority of the proposed 

undersampling pattern in CSMRI. All experiments are performed on a PC with 3.4GHz Intel 

core i7 CPU with 2GB RAM and MATLAB (2012b).  We have collected 2D single slice 

brain MR data from the “MRI of Trinidad & Tobago Limited” (http://mritnt.com/education-

centre/common-uses/mri-of-the-brain/). 

 

We have simulated different types of k-space trajectories to evaluate the gradient variation.  

For practical applications, an undersampling pattern should have small gradient variations in 

a given k-space trajectory. For comparison of gradient variations, we compute gradient loads 

for different types of undersampling patterns in different k-space trajectories, namely, the 

Line Trajectory, the Spiral Trajectory, and the Zigzag Trajectory as shown in Fig.3.11 [6].  

 

Computation of gradient load: 

The gradient load E  is the normalized vector sum of the applied gradients xG  and yG , in x  

and y  directions, respectively in an MRI data acquisition system. It is defined by: 

 

2 2
2

1

1
[( ) ( ) ]

N
x y
I I

Io

E G G
NG 

   

 

where oG is the magnitude of gradient step and N  is the number of selected samples in k-

space [7].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For CS reconstruction of the MR image from undersampled data we used the nonlinear 

conjugate gradient (NCG) algorithm [1]. NCG algorithm minimizes the sum of L1 and TV-

norms with the data fidelity term. We have taken TV and L1-norm regularization parameters 

as 0.35 and 0.01, respectively for our simulation. For convergence, we set a common 

stopping criterion i.e. the relative change of the objective function is less than 410 . It takes 

 
(a) 

 
(b) 

 
(c) 

Fig.3.11:  Different k-space Trajectories. (a) The Line trajectory, (b) the Spiral trajectory, 
and (c) the Zigzag trajectory 

http://mritnt.com/education-centre/common-uses/mri-of-the-brain/
http://mritnt.com/education-centre/common-uses/mri-of-the-brain/
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on average 40 iterations for convergence with the given stopping criterion which is just about 

2 minutes for a simulation platform as mentioned above. 

  

We have also evaluated performance of the proposed sampling pattern for CS reconstruction 

using 20% sampling ratio in terms of mean squared error (MSE), peak signal-to-noise ratio 

(PSNR) and mean structural similarity index (MSSIM). 

Results and discussions: 

From the Fig. 3.12 we have observed that the VD Poisson disk under sampling pattern have 

the least gradient load in all trajectories compared to other undersampling schemes. It is also 

observed that the proposed undersampling pattern gives almost the same gradient variation in 

both trajectories, namely, the line trajectory and zigzag trajectory. But in spiral trajectory, it 

gives slightly higher gradient variation. So, the proposed undersampling pattern is suitable 

with either line trajectory or zigzag trajectory.  

 

From the plot shown in Fig. 3.13, it is clear that the proposed sampling pattern produce the 

least MSE for different sampling ratios. Similarly, Fig. 3.14 shows that the proposed 

sampling pattern gives the best PSNR in different sampling ratios. We also compute MSSIM 

for measuring structural similarities between two images. It is designed to improve on 

traditional methods for the measurement of the quality of reconstructed images like PSNR 

and MSE, which have been proven to be inconsistent with human eye perception. The 

maximum value of MSSIM is one when both images are same. Fig. 3.15 shows the proposed 

sampling pattern has the best MSSIM compared to other sampling patterns for different 

sampling ratios.  

 

Finally, reconstructed MR images using different undersampling scheme are shown in Fig. 

3.16. From the results, we observe that the proposed undersampling scheme gives significant 

improvements in terms of higher contrast and better preservation of edges over other 

undersampling schemes. 

 
 

Fig.3.12: Variation of gradient load of various undersampling methods in different 
trajectories 
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Fig. 3.13: Variation of MSE with increasing sampling ratio for different types of 
undersampling patterns 

 

Fig. 3.14: Variation of PSNR (in dB) with increasing sampling ratio for different types 
of undersampling patterns 
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Fig. 3.15: Variation of MSSIM with increasing sampling ratio for different types of 
undersampling patterns 
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3.7. Conclusions 
We propose a variable density random undersampling pattern based on Poisson disk for 

efficiently acquiring k-space data. Proposed undersampling pattern is not only able to show 

significant improvements in terms of gradient load, MSE, PSNR and MSSIM but in terms of 

visual quality of reconstructed images too it has definite advantage over the state-of-the-art. 

  

 

 

Fig. 3.16: First column: Original MR images of axial Brain, sagittal Brain, Chest and Renal 
arteries. Columns 2-4: Reconstructed images for different methods using the radial, the 
estimated PDF, and the variable density Poisson disk undersampling patterns.  
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Chapter 4 

Reconstruction Based on L1-Norm 
Minimization 

 

4.1. Introduction 

In this chapter, we will present an overview of existing algorithms to reconstruct x  from the 

measured signal  y  Ax . More specifically, suppose  x  is a sparse signal of length n  which 

is undersampled by a measurement matrix A  and y  is the observed data, where 

, ,n n m m  x A y   and .m n  Based on the knowledge of the measurement matrix

A  and measured signal y , we have to recover the sparse signal x . According to linear 

algebra, this problem can be solved by L0-norm minimization i.e. 

0minimize

subject to 

x

y - Ax

 
 

where ԑ is the error term and||.||0counts the number of non-zero elements. 

Problem (4.1) is impractical to solve as it is combinatorial in nature. This problem can be 

solved by replacing the L0-norm with the L1-norm. The modified problem is a convex 

optimization problem and can be represented as- 

1minimize

subject to  

x

y Ax

 
 

where 1 | . | | . | ...  x  . The solution of this L1-norm problem gives the exact original signal 

when x  is sufficiently sparse.  

 To solve the above L1-norm minimization, different relevant works on convex optimization 

are studied for implementation on CSMRI, viz. the Primal-Dual Interior Point Method 

(PDIPM), the Truncated Newton Interior-Point Method (TNIPM),  the Gradient Projection 

(GP) Method, the Iterative Shrinkage Thresholding Algorithm (ISTA), the Fast Iterative 

Shrinkage Thresholding Algorithm (FISTA), the Two-Step IST (TWIST), the Sparse 

Reconstruction by separable Approximation (SpaRSA), the Total Variation (TV) based 

algorithms,  the Projections Over Convex Set (POCS), the Gradient Projection for Sparse 

Reconstruction (GPSR), the Split Bregman Method, the Alternating Direction Method 

(ADM), the Split Augmented Lagrangian Shrinkage Algorithm (SALSA), the Total Variation 

L1 Compressed Sensing (TVCMRI), the Reconstruction from Partial Fourier data (RecPF) 

and the Fast Composite Splitting Algorithm (FCSA). 

 

 

 

(4.1) 

(4.2) 
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4.2. Primal-Dual Interior Point Method (PDIPM) 

 

The Primal-Dual Interior Point Method is the classical method for the solution to the L1-

minimization problem [9].Consider a squandered convex optimization problems that include 

both equality and inequality constraints, 

 

 

 subject to

minimize

0, 1,.....,
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i

f

f i m 



x

x

Ax y

 

 

where, 0 ,...... : n
mf f  

 are convex and twice continuously differentiable, and m nA  . 

We assume that the problem is solvable, an optimal *x  exists and the optimal value of 

 *
of x is *p . 

We also assume that there exists a dual optimal *λ and *ν , which together with *x satisfy the 

KKT conditions 
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Interior-point methods solve the problem (4.3) or the KKT conditions (4.4 – 4.7) by applying 

Newton’s method to a sequence of equality constrained problems, or to a sequence of 

modified versions of the KKT conditions. 

 

The only difference between the KKT conditions (4.4 - 4.7) and the modified KKT 

conditions (4.8 – 4.10) is that the complementarity condition  * * 0i if  λ x  is replaced by 

the condition  * * 1 i if t
  λ x . Then the modified KKT equations are given as- 
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(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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From the modified KKT conditions, we can write the residual  , , 0t r x λ ν , where 

we can define 
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where, 0t   and 
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If , ,x λ ν satisfy  , , 0t r x λ ν , then * *( ), ( )t t x x λ λ  and *( )tν ν . Here x  is 

primal feasible, and ,λ ν are dual feasible, with duality gap /m t . The first block 

component of tr , 

 

   T T
dual o if f   r x D x λ A ν  

 

is called the dual residual, and the middle block 

 

 
1

 ( )cent diag f
t

  r λ x  

 

is the centrality residual. The last block component pri  r Ax y is called the primal 

residual. 

 

By Newton method we can solve the nonlinear equation  , , 0t r x λ ν . The current 

point and Newton step can be denote as 

 

 

( , , ), ( , , )     y x λ ν y x λ ν , 

 

respectively. The Newton step is characterized by the linear equations 

 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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( ) ( ) ( ) 0t t t     r y y r y Dr y y  

i.e., 1( ) ( )t t
  y Dr y r y . In terms of  , ,x λ ν  we can write- 

 

     

   

2 2

1
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0 0
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A
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 From the solution of (4.16) we get the primal-dual search ( , , )pd pd pd pd    y x λ ν . 

 

4.3. Truncated Newton Interior-Point Method (TNIPM) 

 

Using a Lagrangian formulation, the problem (4.2) can be rewritten as an unconstrained 

optimization problem: 

 

 

* 2
2 1

1
arg min ( ) arg min

2
F    x xx x Ax y x   

 
 

where is the Lagrangian multiplier [4]. 

 

Now the problem (4.17) can be rewritten as a quadratic program but with inequality 

constraints: 

2
2

1

1
min

2

subject to , 1,.....,

n

i
i

i i i

u

u x u i n




 

   

Ax y 
 

 

Then the logarithmic barrier function for the constraints i i iu x u    is constructed as 

follows: 

 

     , log logi i i ii i
u x u x      x u  

 

Over the domain of  ,x u , the central path consists of the unique minimiser     * *,t tx u  of 

the convex function: 

 

 2
2

1

1
( , ) ( ) ,

2

n

t i
i

F t u 


   x u Ax y x u   

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.20) 

(4.19) 
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where the parameter  0,t  . 

 

For (4.20) the optimal search direction using Newton’s method is computed by- 

 

 
  

 

x
H g

u
 

where 2 ( , )tF H x u  is the Hessian and ( , )tF g x u is the gradient at the current iterate

( , )x u . 

 

For a large scale, solving the Newton system (4.21) exactly is not computationally efficient. 

We need to find a search direction which gives a good trade-off between computational effort 

and the convergence rate it provides. In this method the search direction is computed as an 

approximate solution to the Newton system (4.21), using Preconditioned Conjugate Gradient 

(PCG) method. 

 

Search Direction via PCGs: 

The Hessian can be representations as- 
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The Hessian H  is symmetric and positive definite. The gradient can be representations as- 

1

2

n 
  
 

g
g

g
  

 

where 

 

 

(4.22) 

(4.23) 

(4.21) 
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Here we calculate the search direction approximately, applying the PCG algorithm. The 

PCG algorithm uses a pre-conditioner P , which approximate the Hessian of 2
2t y Ax 

with diagonal entries. The pre-conditioner P is written as- 

 

  1 2

2 1

2 0

0 0

Tt diag   
        

A A D D
P

D D
 

 

The cost of computing the diagonal entries of TA A  is still expensive; we can approximate 

the diagonal matrix  Tdiag A A with a scaled identity matrix  I  to obtain the pre-conditioner 

 

1 2

2 1

2 0

0 0

t   
    
   

D DI
P

D D
 

 

where   is a positive constant. This pre-conditioner performs well especially when the 

diagonal elements of TA A show relatively small variations. 

 

4.4. Nonlinear Conjugate Gradient (NCG)  

 

The nonlinear conjugate gradient method (NCG) is also known as the conjugate gradient 

(CG) method in nonlinear optimization [1, 11]. For a quadratic function: 

 
2
2( )f  x Ax y   

 

The minimum of f  is obtained when the gradient is 0  i.e. 

 

2 ( ) 0Tf   x A Ax y  

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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The nonlinear conjugate gradient method is generally used to find the local minimum of a 

nonlinear function using its gradient fx alone. It works when the function is approximately 

quadratic near the minimum, which is the case when the function is twice differentiable at the 

minimum. 

 

Given a function ( )f x  of n variables to minimize, its gradient fx indicates the direction of 

maximum increase. One simply starts in the opposite (steepest descent) direction: 

 

0 0( )f  xx x  

 

with an adjustable step length α   and performs a line search in this direction until it reaches 

the minimum of f : 

0 0 0

1 0 0 0

arg min ( )f



  

  

x α x

x x x
 

 

After this first iteration in the steepest direction 0x the following steps constitute one 

iteration of moving along a subsequent conjugate direction ns , where 0 0s  x . 

 

4.5. Iterative Shrinkage-Thresholding (IST)  

 

Iterative Shrinkage-Thresholding (IST) method mainly involves operations such as vector-

addition and matrix-vector multiplications [3, 5]. 

 

The problem (4.2) can be rewritten as- 

 

min ( ) ( ) ( )x F f g x x x  

where 2
2

1
( )

2
f  x y Ax  and 1( )g x x  . 

 

The update rule to minimize (4.30) is computed using a second-order approximation of f : 
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1

( )k k k
k

f


  u x x  

(4.28) 

(4.29) 

(4.30) 

(4.31) 

 

(4.32) 

 

(4.33) 

 

(4.34) 
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In (4.33), the Hessian 2 ( )kf x is approximated by a diagonal matrix k I . Then the closed-

form solution of (4.34) is given as- 
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( ) | |
arg min

2
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( ) | | if | |
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soft u a sign u u a

sign u u a u a

 

  
 


 

 

is the soft-thresholding or shrinkage function. 

 

 The parameter  approximate the Hassian Matrix 2 ( )kf x as- 

 
1 1
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1 1

( ) ( ( ) ( )

( ) ( )

k k T k k
k
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x x x x

x x x x
 

 

This is known as the Barzilai-Borwein equation. 

 

4.6. Two-stepIterative Shrinkage-Thresholding (TwIST)  

 

Algorithms in this class have a two-step IST (TwIST) structure, i.e., each iterate depends on 

the two previous iterates, rather than only on the previous one [10]. 

 

The solution of the IST algorithm can be rewrite as- 

 

  1 (1 ) T
t t t t       x x x A Ax y  

 

where 0   and   is a Thresholding operator. In the original IST algorithm, 1  . 

 

Each  iteration of the IST algorithm only involves some addition, matrix-vector product by

and TA A , and the application of the Thresholding operation. 

 

Consider the linear system Ax y , with A  positive definite; define a so-called splitting of 

A as  A C R ,   such that C is positive definite and easy to invert (e.g. a diagonal matrix). 

A stationary two-step iterative method for solving Ax y , is defined as- 

(4.35) 

(4.36) 

(4.37) 

(4.38) 
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1
1 0 0 0

1
1 1 0(1 )t t t



  




 

  

    

x x C Ax y

x x x C Ax y
 

 

for 1t  ,where 0x is the initial vector and 0, ,   are the parameters of the algorithm . The 

designation “two-step” stems from the fact that 1tx depends on both tx and 1tx , rather than 

only on tx  . 

From recent studies on CSMRI, it is seen that the TV-L1-L2 model for MR image 

reconstruction from random undersampled data gives better results [5, 6, 7, 2, 8]. The model 

is defined as follows: 

 2* 1
1 22 12

arg min u TV
    

x

x F x y Ψx x  

where x  is the MR image, y  is the measured Fourier data and uF  is the undersampling 

Fourier operator. Assume that x  has a sparse representation in the wavelet domain ( Ψ ). Some 

of the well known TV-L1-L2 model based CS reconstruction algorithms for MR image 

reconstruction are- 

 Total Variation L1 Compressed Sensing (TVCMRI), 2008. 

 Reconstruction from Partial Fourier data (RecPF), 2010. 

 Fast Composite Splitting Algorithm (FCSA), 2011. 

 

4.7. Proposed High Throughput Reconstruction Technique for CS based MRI 

We have developed a novel high throughput MR image reconstruction algorithm based on the 

TV-L1-L2 model without compromising the quality. The experimental results show that the 

proposed method is quite efficient compared to the state-of-the-art MR image reconstruction 

techniques in terms of the CPU time and the quality of the reconstructed MR images. The 

average CPU time required for the proposed method is approximately 2-3 seconds per image 

for 20% sampling ratio when implemented in a PC equipped with Intel i7 processor with 2 

GB RAM. 

Consider x  is an MR image of size ( )N N  ordered lexicographically into a column 

vector of dimension ( 1)N . uF  is a partial Fourier operator and y  is the measured 

undersampled k-space data of size ( 1)M   such that as uy F x , where M N . Now the 

CSMRI problem is to reconstruct the MR image x  from the measured data y  and sensing 

matrix uF . We assume that x  has a sparse representation in some transform domain ( Ψ). 

Now invoking the TV-L1-L2 model as defined above, we get 

 

* 2
2 1 1 2

1
arg min || || || || || ||

2
u TV 

 
    

 
xx F x y Ψx x  

(4.39) 
 
(4.40) 

(4.42) 

(4.41) 
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where 1  and 2 are two positive parameters and Ψ  is the wavelet transform matrix. The total 

variation or TV- norm may be defined as   

    2 2

TV|| || x ij y ij
ij

x x x D D , 

where xD
 
and yD denote the finite difference operators on the x and y -axis respectively.  The 

terms 2
2|| ||u F x y  and 1|| ||Ψx denote the L2-norm of error and the L1-norm of a sparse vector, 

respectively. If we consider only first and second terms then it is a general L1-minimization 

problem. But, here the TV-term is added to preserve edges in the CS reconstructed image. 

However, the addition of this non-smooth TV-term makes this problem very difficult to 

solve. 

To solve this problem we first decompose the above problem into two subproblems- one is 

the total variation regularization and other is the L1-norm regularization. The target solution 

is obtained by the linear combination of the two subproblem solutions. We solve these two 

subproblems independently in each iteration by using the augmented Lagrangian multiplier 

method (ALM). In order to solve the TV subproblem, it is first converted into its dual form 

followed by the ALM steps. The solutions of both the subproblems are then linearly 

combined to get the final solution. 

The algorithmic steps of the proposed algorithm is summarized in Algorithm 1, where  1  

and 2  are two regularization parameters and Ψ  is the sparse representation basis set (i.e. 

wavelets). The 1u  is the solution of the L1- regularized sub problem and the 2u  gives the 

solution of the TV regularized sub problem. After combining solutions of both the sub 

problems, the overall algorithm is accelerated using the steps of the ALM. Finally, *x  gives 

the reconstructed MR image. 

 

(4.43) 
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4.8. Simulation results 

4.8.1. Prior Art 

 

We have implemented L1-normminimization based CS-MRI reconstruction algorithms like- 

 

 Primal-Dual Interior Point Methods (PDIPM), 1997. 

 Iterative Shrinkage Thresholding Methods (IST), 2004. 

 Two-Step IST (TWIST), 2007. 

 Truncated Newton Interior-Point Method (TNIPM), 2007. 

 Gradient Projection for Sparse Reconstruction (GPSR), 2008. 

 Proximal Gradient Methods (FISTA), 2009.  

 Sparse Reconstruction by separable Approximation (SpaRSA), 2009. 

 Split Augmented Lagrangian Shrinkage Algorithm (SALSA),  2010 
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The PDIPM solves the L1-minimization problem in a classical way. Experimental result 

shows the PDIM requires CPU time in order of thousand which is much higher than other 

algorithms. But in the TNIPM method a pre-conditioner is used to reduce the number of 

operations. Required CPU time for different L1-norm minimization problem are shown in 

Fig.4.1. From the figure, we say that the required CPU time for the TNIPM and the IST are 

required higher CPU time compare to other methods. On the other hand, in case of SALSA 

algorithm the required least CPU time compare to other methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.8.2. The proposed method 

Experimental setup: 

Numerous experiments have been conducted to show the superiority of the proposed 

algorithm on CSMRI. All experiments are on a PC with 3.4GHz Intel core i7 CPU with 2GB 

RAM and MATLAB (2012b).  

We have collected MRI data set from GNRC Hospital, Guwahati, India 

(http://www.gnrchospitals.com).  We have collected 2D single slice Sag T2 TOP L. S. Spine 

MRI data and 3-pl T2* FGRE orbit MRI data.  The L. S. Spine MRI data were acquired from 

a GE 1.5T signa HDxt scanner with following parameters:  TR/TE: 3520/111.044 ms, slice 

thickness: 4 mm, spacing between scans: 5 mm, sampling (%): 100, and Flip angle: 90deg. 

The orbit MRI data were acquired from a GE 1.5T signa HDxt scanner with following 

parameters:  TR/TE: 5.536/1.692 ms, slice thickness: 5 mm, spacing between scans: 4 mm, 

sampling (%): 100, and Flip angle: 30deg. 

 

We have also collected 2D single slice brain MR data from the “MRI of Trinidad &Tobago 

Limited” (http://mritnt.com/education-centre/common-uses/mri-of-the-brain/). 

 

For CS reconstruction of the MR image using different algorithms we have taken 1 0.01 

and 2 0.35  . We have set a common stopping criterion i.e. the relative change of the 

objective function is less than or equal to 410  for the convergence. For our simulations on 

 

Fig. 4.1: Comparison of CPU-Time requirements of different CS-MRI reconstruction 

algorithms with changing sampling ratio 

http://www.gnrchospitals.com/
http://mritnt.com/education-centre/common-uses/mri-of-the-brain/
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CS reconstructions the sampling pattern is the estimated PDF undersampling pattern in [1] at 

20% sampling ratio.  

 

To evaluate the performance of the proposed algorithm we compare CS reconstruction results 

with those of the state-of-the-art. We compute the CPU time, peak signal-to-noise ratio 

(PSNR) and mean structural similarity index (MSSIM). MSSIM measures the image quality 

based on structural similarity whose value ranges between 0 and 1. Two very similar images 

will have MSSIM value very close to 1. 

Results and discussions: 

PSNRs of the CS reconstructed brain MR images with different techniques are shown in Fig. 

4.2. It is clearly observed the proposed method gives higher PSNR values for different 

sampling ratios compared to other methods. Similarly, Fig. 4.3 shows that the proposed 

technique has the best MSSIM value compared to other reconstruction methods for different 

sampling ratios. This shows that the proposed method is able to preserve various details 

present in the image better than other methods. 

CPU time is used to investigate the time complexity of the proposed method compared to 

other methods. It indicates how quickly the particular algorithm reaches the convergence. 

Fig.4.4 shows that the NCG method requires the highest amount of computational time to 

perform its complex operations among all other CSMRI reconstruction methods. On the other 

hand, the proposed method requires the least computational time in any sampling ratio 

because in each iteration it moves a substantial amount towards the convergence due to the 

acceleration scheme of the ALM. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.2: Variation of PSNR (in dB) with increasing sampling ratios for various algorithms 
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Fig.4.3: Variation of MSSIM values with increasing sampling ratios for various algorithms 

 

 

 

 

The corresponding CS reconstructed MR images of brain and L.S. spine using different 

algorithms are shown in Figs. 4.5 and 4.6, respectively. From reconstructed images, it is seen 

that the proposed technique gives better reconstruction in terms of higher contrast and better 

preservation of edges. From Fig. 4.5, it is clearly observed that the proposed method gives 

almost negligible visual aliasing artifacts compared those in the RecPF, the TVCMRI, and 

the FCSA methods.  

Fig. 4.4: Variation of CPU-time with increasing sampling ratios for various algorithms 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Fig. 4.5: (a) Original brain MR image and (b) to (f ) are the reconstructed images by the 
NCG, the RecPF, the TVCMRI, the FCSA and the proposed algorithm, respectively with 
20% sampling ratio 
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Fig. 4.6: (a) Original LS Spine MR image and (b) to (f ) are the reconstructed images by the 
NCG, the RecPF, the TVCMRI, the FCSA and the proposed algorithm, respectively with 
20% sampling ratio 
 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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4.9. Conclusions 

We have proposed a TV-L1-L2 based high throughput MR image reconstruction algorithm 

using the acceleration scheme of the ALM. Reconstruction results on two in vivo MR images 

show significant improvements in terms of CPU time, PSNR, and MSSIM over the state-of-

the-art. From different reconstructed images we observe that the proposed method gives 

better reconstruction results in terms of higher contrast and better preservation of edges with 

very less visual aliasing artifacts. 
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5.1. Introduction 

The discrete wavelet transform 

dimensional images, wavelet filters are normally applied in both vertical and horizontal 

directions to produce four subbands

High-Low (HL) and the High

decomposed to obtain the coarsest approximation band and a series of detail subbands at 

different resolutions. Since each subband represents a filtered and 

the underlying image, coefficients 

relationship is illustrated below, showing the situation for HL bands i.e. those that have been 

high-pass filtered horizontally and low

 

 

 

 

 

 

 

 

 

 

 

From the above figure, we see that the subsampling structure means that a coefficient (the 

parent) in the highest level HL band corresponds spatially to a 

children) in the immediately lower 

block of child coefficients in the 

quadtree structure distribution of wavelet coefficients in various subbands. Here, th

coefficients in the highest scale can be seen as the root nodes and the coe

lowest scale are the leaf nodes. Each coe

scale below it. If a parent coe

large/small. Besides the sparsity of wavelet coe

another good prior for compressive sensing recovery

theory, the minimum required number of measurements for compressed sensing 

reconstruction can be reduced to by using structural sparsity as a prior term

Fig. 5.1: Parent-child relationship

Chapter 5

Wavelet Tree Sparsity

transform (DWT) is quite well known in image process

dimensional images, wavelet filters are normally applied in both vertical and horizontal 

subbands, namely, the Low-Low (LL), the Low

High-High (HH) bands. Then only the LL band is iteratively 

coarsest approximation band and a series of detail subbands at 

Since each subband represents a filtered and a subsampled version of 

icients of each subband are related to the original

relationship is illustrated below, showing the situation for HL bands i.e. those that have been 

pass filtered horizontally and low-pass filtered vertically. 

see that the subsampling structure means that a coefficient (the 

HL band corresponds spatially to a 2 2  block of coefficients (the 

immediately lower HL band, each coefficient of which itself has a 

block of child coefficients in the next lower level HL band, and so on.  1

ribution of wavelet coefficients in various subbands. Here, th

scale can be seen as the root nodes and the coe

leaf nodes. Each coefficient (non leaf) has four children in the next lower

If a parent coefficient has a large/small value, its children also tend to be 

sparsity of wavelet coefficients, this tree structure also provides 

another good prior for compressive sensing recovery [6, 7].  According to structured sparsity 

theory, the minimum required number of measurements for compressed sensing 

reconstruction can be reduced to by using structural sparsity as a prior term

child relationships between subband coefficients
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in image processing. In two-

dimensional images, wavelet filters are normally applied in both vertical and horizontal 

Low-High (LH), the 

only the LL band is iteratively 

coarsest approximation band and a series of detail subbands at 

subsampled version of 

original image. The 

relationship is illustrated below, showing the situation for HL bands i.e. those that have been 

see that the subsampling structure means that a coefficient (the 

block of coefficients (the 

HL band, each coefficient of which itself has a 2 2  

1. This is called the 

ribution of wavelet coefficients in various subbands. Here, the 

scale can be seen as the root nodes and the coefficients in the 

four children in the next lower 

a large/small value, its children also tend to be 

is tree structure also provides 

ng to structured sparsity 

theory, the minimum required number of measurements for compressed sensing 

reconstruction can be reduced to by using structural sparsity as a prior term rather than 

between subband coefficients 
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 O   log  K K n  for standard K-sparse signal [6]. The improvement by exploiting tree 

structure can be significant when n  is large. 

5.2. Related work 

It has been observed that sparse signal can be exactly reconstructed from highly 

undersampled linear measurements. In compressed sensing MRI, we can reconstruct good 

quality MR image with a small number of measurements because MR images are sparse in 

transform domain like wavelet.  From recent studies it has been observed that the wavelet 

coefficient follow a quadtree structure for 2D image. In wavelet domain the children 

coefficient follows the property of the parent coefficients.  By utilizing this structural 

property of wavelet coefficients the quality of CSMRI reconstruction can be improved further 

[6, 7].  

5.3. Enhancing the sparsity of MR image by wavelet tree structure 

Chen and Huang [6] proposed a new model, which combines wavelet sparsity, gradient 

sparsity and tree structure of wavelet as regularization terms with data fidelity term. In tree 

structure model, each pair of parent child wavelet coefficients is kept in one group, which 

forces them either to be zeros or non-zeros. They first decompose this composite 

regularization problem i.e. wavelet tree sparsity based TV-L1-L2 model into three simpler 

subproblems. One is the L1-norm regularization subproblem, the second is the TV 

regularization subproblem, and the third is the wavelet tree sparsity subproblem. The L1-norm 

subproblem is directly solved by the FISTA [8]. The TV-subproblem is first converted to a 

dual problem then the dual is solved by using the FISTA [9]. Finally, the tree sparsity 

subproblem is solved by using a group Thresholding operator. Then solutions of the three 

subproblems are linearly combined to get the actual solution. They conduct extensive 

experiments to compare the algorithm with other state-of-the-art CSMRI reconstruction 

algorithms. The new TV-L1-L2 model with tree sparsity of wavelet coefficients is 
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where x  and y  represents the MR image and the measured k-space data, respectively, of a 

particular slice and  G is a binary matrix, represent the grouping index. To solve this problem 

efficiently a new variable z  is introduced as given below: 
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where q represent the total number of groups. According to the Lagrangian formulation the 

equivalent unconstraint problem can be written as: 

(5.3) 

(5.1) 

(5.2) 
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where   is a positive  parameter.  Algorithmic steps of the above problem are summarized in 

Algorithm-5.1, known as the wavelet tree sparsity MRI (WaTMRI) reconstruction algorithm. 
We have implemented above formulation for 2D multi-slice MR image reconstruction from 
highly undersampled measurements.  
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5.4. Experimental Results 
 
Experimental setup: 
All experiments are performed on a PC with 3.4GHz Intel core i7 CPU with 2GB RAM and 

MATLAB (2012b). We have collected RF spoiled gradient echo (GE) abdomen MRI data 

available at (http://mridata.org/fullysampled/knees). These data were acquired from a 32-

channel paediatric body MRI 3T scanner with following parameters, FOV: 2260 260 mm , 

TR/TE: 4.312/1.012 ms, ST: 1 mm, spacing between scans:-0.5 mm and matrix size:

192 256 . 

 

We have also collected a MRI data set from GNRC Hospital, Guwahati, India 

(http://www.gnrchospitals.com). We have collected a 2D multi-slice 3D BRAVO T1 HR 

brain MRI data. The data were acquired from a GE 1.5T signa HDxt scanner with following 

(5.4) 

http://www.gnrchospitals.com/
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parameters:  TR/TE: 14.912/6.456 ms, slice thickness: 1.2 mm, spacing between scans: 1.2 

mm, sampling (%): 100, and Flip angle: 15deg.  

 

For CS reconstruction using different algorithms we have taken 1 0.35   and 2 0.01  . We 

set a common stopping criterion i.e. the relative change of the objective function less than
410  for simulation of all algorithms.  

 

We compute the peak signal-to-noise ratio (PSNR) and the mean structural similarity index 

(MSSIM) to evaluate the performance of the proposed multi-slice MR image reconstruction 

technique besides visual analysis of reconstructed images. 

 

Results and discussions: 

 

The WaTMRI takes on average 18 iterations whereas the FCSA and the NCG algorithms take 

on average 40 and 23 iterations, respectively for convergence at 20% sampling ratio. The 

corresponding CPU time required for the NCG, the FCSA and the WaTMRI are on average 

130, 2 and 2.3sec./slice, respectively. Table 5.1 shows results for varying sampling ratios for 

different methods including the proposed method for an in vivo brain MR image. Results 

show that the proposed method takes almost similar time for reconstruction as taken by one 

of the fastest state-of-the-art algorithms, namely, the FCSA. 

 

Table 5.1: PSNR, MSSIM and CPU time for different methods with varying sampling ratios 
 

Sampling 
ratio (%) 

PSNR (dB) MSSIM CPU time (sec.) 

NCG FCSA WaTMRI NCG FCSA WaTMRI NCG FCSA WaTMRI 

9% 21.42 23.07 24.48 0.6804 0.7143 0.7805 122.52 1.92 2.43 

12% 24.78 26.16 27.11 0.7756 0.8185 0.8485 134.00 1.90 2.37 

15% 26.97 28.81 29.68 0.8233 0.8635 0.8868 128.22 1.84 2.29 

18% 28.17 29.94 31.14 0.8598 0.8804 0.9056 132.44 1.97 2.08 

20% 29.88 31.45 32.53 0.8813 0.8967 0.9217 118.50 1.77 2.20 

 
 
For quantitative evaluation of the proposed method we have computed PSNR and MSSIM 

values for the proposed method and two other TV-L1-L2 model based CSMRI algorithms, 

namely, the NCG [1] and the FCSA [3].  From Table 5.1, we have seen that the WaTMRI 

gives PSNR improvements on an average of 2.5 dB and 1dB than those of the NCG and the 

FCSA, respectively. Similarly, the WaTMRI gives MSSIM improvement on an average of 

0.06 and 0.03 than those of the NCG and the FCSA, respectively. Therefore we can say that 

the WaTMRI gives better PSNR and MSSIM values than those of the NCG and the FCSA 

irrespective of sampling ratio.  

 

Fig.5.2 shows the original abdomen MR image and the corresponding CS reconstructed 

images using different techniques. To compare the advantage of the proposed method over 

other methods, we have taken a small region of the reconstructed image and then zoomed it. 
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This may be observed at the bottom rightmost corner.  From the highlighted results, it is seen 

that the WaTMRI gives better reconstruction in terms of higher contrast with better 

preservation of edges and less aliasing artifacts at just 20% undersampling ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2: First row left to right: Original abdomen MR image, reconstructed 
abdomen MR image using NCG method. Second row left to right: reconstructed 
abdomen MR image using FCSA methods and reconstructed abdomen MR 
image using WaTMRI 

 

5.5. Conclusions 

We have proposed a 2D multi-slice MR image reconstruction technique using the wavelet 

tree sparsity along with wavelet and gradient sparsities. We observe that reconstructions 

using the WaTMRI algorithm show significant improvements in terms of higher contrast and 

better preservation of edges over the state-of-the-art techniques. 
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Chapter 6 

Interpolated Compressed Sensing and Multi-
slice MR image Reconstruction 

 

6.1. Introduction 

Multi-slice imaging is very common in clinical practice because it allows a volume of 

anatomy to be imaged. In spin echo imaging, TR is longer than TE, the scanner would be idle 

(not working) in most of the time, if a single slice is acquired. But in multiple slice imaging, 

adjacent slices are imaged while waiting for relaxation of the first slice towards equilibrium, 

resulting in decreased image acquisition time for the set of slices [9].  

The slices are selected by applying RF pulses at different frequencies and detecting the 

signals from different slices at different times. When the slice selection gradient is turned on, 

each slice is tuned to a different resonant frequency. In particular, a specific slice can be 

selected for excitation by adjusting the RF pulse frequency to correspond to the resonant 

frequency of that slice. The process begins by applying an excitation pulse to one slice and 

collecting the echo signal. Then, while that slice is in longitudinal relaxation before the next 

cycle can begin, the excitation pulse frequency is shifted to excite another slice. This process 

is repeated to excite and collect signals from the entire set of slices at slightly different times 

within one TR interval [9], [Chapter 4, 10]. 

In many pulse sequences for MRI acquisition, there is a quite long delay between each 

excitation (repetition time) of a particular slice while the magnetization recovers. Because of 

the relatively long T1 relaxation time of tissues, a delay of up to three seconds may be 

necessary before repeating the excitation. To make the most efficient use of this time, we can 

excite a number of parallel slices in each interval, which is achieved by changing the 

frequency of the RF pulse. This procedure can be repeated to produce a series of slices as 

shown in Fig.6.1. The number of slices obtainable can be calculated by dividing the repetition 

time TR by the time required for each slice. For example, if TR = 400 ms and TE = 50 ms, 

the theoretically possible number of slices is eight (in practice seven, since each slice requires 

slightly more than TE) [9], [Chapter 15,   8]. 

 The main advantage of multi-slice imaging is that a set of slices can be imaged in the same 

TR time. The main factor that limits the number of slices is the TR. The maximum number of 

slices is the TR value divided by the time required for each slice. This limitation is especially 

significant for T1-weighted images that use relatively short TR values. With selective 

excitation there is the possibility that when an RF excitation/saturation pulse is applied to one 

slice of tissue, it will also produce some effect in an adjacent slice. This is the reason for 

leaving gaps between slices during the acquisition.  

However, additional slices may be acquired between two slices, which are otherwise 

interleaved, by interleave acquisition process. Here, we do not acquire adjacent slices 

http://www.mr-tip.com/serv1.php?type=db1&dbs=Slice
http://www.mr-tip.com/serv1.php?type=db1&dbs=Slice
http://www.mr-tip.com/serv1.php?type=db1&dbs=Slice
http://www.mr-tip.com/serv1.php?type=db1&dbs=Equilibrium
http://www.mr-tip.com/serv1.php?type=db1&dbs=Image%20Acquisition%20Time
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simultaneously. With multiple TR and RF pulses we can excite the desired slice locations. 

Consider a set of 3 mm slices placed one next to another so that 10 slices exactly span 30 

mm. Then instead of sequential acquisition  in the order (1, 2, 3, …, 10),  we acquire  

interleaved slices means (for e.g. 1,4,7,10;  2,5,8;  3,6,9).  Finally, we get all the 10 slices of 

3mm width without any gap. Interleaved acquisitions are preferable because frequency range 

of RF pulses may not have sharp cut-offs and hence positioning of slices may not be very 

accurate  [9].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6.1: 2D Multi-slice MR imaging 
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6.2. Interpolated Compressed sensing MRI 

Recently the interpolated compressed sensing (iCS) MRI idea is proposed by Pang and Zhang 

[4, 5] and Pang et al. [6, 7]. They demonstrated a novel multi-slice acquisition technique for 

improving image quality and contrast by utilizing the inter-slice similarity. They estimated 

missing samples for some of the highly undersampled slices from their adjacent low 

undersampled counterparts using a novel strategy of combining an efficient interpolation 

technique with the existing CSMRI reconstruction techniques. They coined the term 

interpolated compressed sensing (iCS) to name their approach.  

In multi-slice CS acquisition, some slices are highly undersampled (H-slice) and some slices 

are relatively low undersampled (L-slice). In case of H-slice the centre region of the k-space 

is acquired to obtain the low resolution image, on the other hand in case of L-slice more k-

space data is acquired by using the incoherent undersampling strategy. The extra k-space data 

of the L-slice is used to estimate the high frequency information of H-slices. Using low 

resolution images of a pair of H-slice and L-slice a weighting function is obtained. This is 

then used to estimate the difference between the H-slice (or target slices) and L-slices by 

convolution with the low undersampled slice (L-slice). Finally, the CS reconstruction of each 

is carried out to generate a sequence of high resolution 2D multislice MRI sequence. The 

above process may be shown graphically as in Fig. 6.2. We summarize the Pang’s method as 

follows: 

Interpolation: First, the weighting function between the H-slice and the L-slice is generated 

by calculating ratio between corresponding two low resolution images. By taking Fourier 

Transform the weighting functions in k-space domain are obtained. Second, the estimated k-

space data of the target H-slice are calculated by taking convolution of the weighting function 

and the undersampled k-space data of the L-slice. Third, combine these estimated data to 

the k-space of the originally acquired target slice.  

CS Reconstruction: After interpolation all slices including L-slices are individually 

reconstructed by using nonlinear Conjugate Gradient (NCG) method [1]. 

 

6.3. Proposed multi-slice MR image reconstruction using interpolation and compressed 

sensing 

 3D MRI is the best way to analysis the 3D anatomical structure. But due to the slow imaging 

process the conventional 3D MRI usually leads to impractical scan time.  Therefore, 2D 

multi-slice MRI is used instead. In 2D multi-slice MRI the anatomical variation in adjacent 

slices are vary less as they are highly correlated because a number of slices are acquired 

within a small volume. Therefore, we can estimate any intermediate slice from neighbouring 

slices. So, we can undersample adjacent slices non-uniformly and reconstruct good quality 

MR images by interpolating the missing samples from low undersampled slice to 

neighbouring highly undersampled slice.  
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This interpolation technique significantly reduces amount of total acquired data or 

measurements which in turn reduces the MRI scan time. We have proposed a fast 2D multi-

slice interpolation technique to estimate the relative missing samples from a highly 

undersampled slice as shown in Fig.6.3. After interpolation each slice is individually 

reconstructed using the FCSA method.   

 

Fig. 6.2: Interpolated compressed sensing by Pang’s method 
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Fig. 6.3: Proposed interpolation based multi-slice MR image reconstruction 
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Algorithmic steps of the proposed technique are summarized in Algorithm-6.1. Suppose, 

 1 2 3, , ,..., p
h l h h y y y y

 
represents the ensemble of measured raw data corresponding to a set 

of 2D multi-slice images and  1 2, , , p x x x  denotes the corresponding MR images. For 

example, 1 1
h hy F x  denotes the highly undersampled k-space data in slice-1 and 2 2

l ly F x

denotes the relatively low undersampled k-space data in slice-2, and so on. Here, hF and lF  

represent the Fourier operators for high and low undersampled slices, respectively. Here, first 

we estimate the highly undersampled slices using the proposed interpolation technique. Then 

each slice is individually reconstructed using the FCSA algorithm. target
hy represents a highly 

undersampled target slice and c
hy  represents a hypothetical slice containing only a few lines 

of the low undersampled slice ly from locations identical to those taken for target
hy .  
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6.4. Experimental Results 

Experimental setup: 

Numerous experiments have been conducted to show the superiority of the proposed 

algorithm on CSMRI. All experiments are performed on a PC with 3.4GHz Intel core i7 CPU 

with 2GB RAM and MATLAB (2012b).We have collected 3D fast spin-echo (FSE) knee 

MRI data available at1. The knee MRI data were acquired from a GE HDx 3T scanner with 
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following parameters, field of view (FOV): 2160 160 mm , TR/TE: 1550/25.661 ms, slice 

thickness (ST): 0.6 mm, spacing between scans:0 mm and matrix size:320 320 .  

 

We have also collected MRI data set from GNRC Hospital, Guwahati, India 

(http://www.gnrchospitals.com). We have collected 2D multi-slice 3D BRAVO T1 HR brain 

MRI data and 3D TOF- 1SLAB brain MRI data. The 3D BRAVO T1 HR brain MRI data 

were acquired from a GE 1.5T signa HDxt scanner with following parameters:  TR/TE: 

14.912/6.456 ms, slice thickness: 1.2 mm, spacing between scans: 1.2 mm, sampling (%): 

100, and Flip angle: 15deg. The 3D TOF- 1SLAB  brain MRI data were acquired from a GE 

1.5T signa HDxt scanner with following parameters:  TR/TE: 21/3.2 ms, slice thickness: 1.6 

mm, spacing between scans: 0.8 mm, sampling (%): 100, and Flip angle: 20deg. 

 

We have also simulated 2D multi-slice brain MR images using the BrainWeb simulator 

http://brainweb.bic.mni.mcgill.ca/brainweb with following parameters, pulse sequence: 

SFLASH, TR/TE: 18/10 ms, Flip angle: 30 deg, Image Type: magnitude, Noise level: 0 %, 

INU field: field A and INU level: 20 %. 

 

For CS reconstruction of the MR image using different algorithm we have taken 1 0.35   

and 2 0.01  . For all algorithms we set a common stopping criterion i.e. the relative change 

of the objective function less than 410 .  For convergence, CPU times required for the NCG 

and the FCSA algorithm are on average 130 and 2 secs. / slice, respectively.  To evaluate the 

performance of the proposed interpolation technique we compared the CS reconstruction 

results with that of the state-of-the-art. We compute the CPU time, peak signal-to-noise ratio 

(PSNR) and mean structural similarity index (MSSIM) for different MR images.   

 

Results and discussions: 

From experimental results, we observe that the CPU time required for the proposed 

interpolation is approximately 0.5 sec whereas the CPU time required for iCS-interpolation is 

approximately 11 sec for interpolation of nine adjacent slices. From this observation we 

conclude that the proposed interpolation technique is twenty times faster than the iCS-

interpolation. Generally in clinical practice 100-300 2D slices are acquired for 3D 

reconstruction. Therefore, in clinical MRI the proposed interpolation would be highly 

significant.  

 

For fair comparisons, we also combine the proposed interpolation scheme with the NCG 

algorithm as in the iCS [5]. The proposed interpolation technique with the NCG gives better 

PSNR and MSSIM values than the NCG and the FCSA methods alone. But the PSNR and the 

MSSIM values of the proposed method with the NCG are quite similar with that of the iCS 

method whereas the proposed interpolation with the FCSA gives better PSNR and MSSIM 

values than the iCS and other methods without using interpolation. Results are shown in 

Tables 6.1 and 6.2. The proposed interpolation technique with the FCSA shows average 

improvement more than 1dB in PSNR than the iCS method. On the other hand, for the NCG 

http://www.gnrchospitals.com/
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and the FCSA methods alone, improvements are respectively, 3 dB and 2.5dB. Similarly, 

proposed interpolation technique with the FCSA shows an average improvement of 0.02 in 

MSSIM than the iCS method whereas they are respectively 0.05 and 0.03 for the NCG and 

the FCSA methods alone. 

 

Table 6.1: Comparison of PSNR (in dB) of CS reconstructed knee slices using different 
techniques 

Slice NCG FCSA iCS Prop. NCG Prop. FCSA 

1 30.06 30.84 32.84 32.77 33.68 

3 30.39 31.07 31.76 31.96 33.19 

4 30.62 31.26 33.32 33.48 33.98 

6 30.37 31.18 32.96 32.88 33.59 

7 28.57 29.44 30.92 31.01 31.92 

9 30.14 30.95 31.98 32.12 33.07 

 
Table 6.2: Comparison of MSSIM of CS reconstructed knee slices using different techniques 

Slice NCG FCSA iCS Prop. NCG Prop. FCSA 

1 0.8059 0.8122 0.8266 0.8334 0.8415 

3 0.8019 0.8105 0.8227 0.8357 0.8432 

4 0.8205 0.8276 0.8786 0.8761 0.8848 

6 0.8146 0.8208 0.8774 0.8779 0.8852 

7 0.7631 0.7773 0.8031 0.8092 0.8203 

9 0.7963 0.8041 0.8249 0.8286 0.8411 

 
CS reconstructed BrainWeb and in vivo images of brain and knee are shown in Figs. 6.4, 6.5 

and 6.6, respectively. From reconstructed images, it is seen that the proposed technique gives 

better reconstruction result in terms of contrast and preservation of edges compared to other 

methods. The proposed method also gives less visual aliasing artifacts. 
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Fig. 6.4: Comparison of reconstructed slices using different techniques at 9% sampling ratio.  
First row left to right: Original BrainWeb image, NCG method without interpolation and 
FCSA method without interpolation. Second row left to right: interpolated compressed 
sensing method, proposed interpolation technique with the NCG and the FCSA methods, 
respectively 

 

Fig. 6.5: Comparison of reconstructed slices using different techniques at 18% sampling 
ratio.  From left to right: Original in vivo brain image, results of the interpolated compressed 
sensing method, and the proposed method with the FCSA 
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Fig. 6.6: Comparison of reconstructed results using different techniques with a zoomed 
portion at the bottom rightmost corner.  First row left to right: Original knee MR image, and 
results of the NCG and the FCSA methods without interpolation. Second row left to right: 
Results of interpolated compressed sensing method, proposed interpolation technique with 
the NCG and the FCSA methods 

 

6.5. Conclusions 

We have proposed a fast interpolation based 2D multi-slice CSMRI reconstruction technique. 

From the experimental results we observe that the proposed interpolation technique is twenty 

times faster than the iCS-interpolation. CS reconstructions on both simulated and in vivo 2D 

multi-slice images show that the proposed method with the NCG gives similar or slightly 

better while the proposed method with the FCSA gives quite superior results compared to the 

iCS method in terms of better contrast and preservation of edges. 
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Chapter 7 

Conclusions and Future Works 
Conclusions of the project are summarized as follows: 

1. We have proposed an efficient k-space under-sampling pattern namely the 'variable 

density under-sampling pattern' to efficiently acquire k-space data in MRI. The 

reconstructed result using proposed undersampling pattern is compared to other well 

known undersampling patterns and it has been seen that the proposed under-sampling 

pattern gives better results compared to other under-sampling patterns in terms of 

MSE, PSNR, and MSSIM. 

 

2. Proposed a high throughput MR image reconstruction algorithm. The performance of 

the proposed Algorithm is compared with different L1-minimization algorithms. From 

the result we observed that the proposed algorithm gives better results in terms of 

CPU time and quality of reconstructed MR images in terms of PSNR and MSSIM. 

 

3. We have proposed a fast interpolation technique for compressed sensing based 2D 

multi-slice MR image reconstruction from highly undersampled measurements. 

Results show that the proposed interpolation technique is more than twenty times 

faster than the state-of-the-art. 

 

A few important tracks of future works for this project could be as mentioned below: 

 

1. In future, works on enhancing the sparsity of the MR image for better reconstruction 

may be pursued. For this, structural sparsity of the MR image in transform domain 

may be considered. Also, inclusion of some weighting scheme for enhancing the 

sparsity in both the transform domain as well as in the spatial domain may be carried 

out.  

2. To focus on the design of efficient undersampling patterns for 2D multi-slice and 3D 

MRI data acquisition. 

3. To give thrust on compressed sensing based dynamic MR image reconstruction in cine 

cardiac MRI. 

4. To extend the proposed method for the efficient implementation of CS based parallel 

MRI. 
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Important Highlights, Observations, Findings of this Research Work 
 
i. Database Preparation 

We have collected different types of real MRI data sets from GNRC Hospital, Guwahati, 

India. For example, we have collected 2D multi-slice 3D BRAVO T1 HR brain MRI data, 3D 

TOF- 1SLAB brain MRI data, and 2D single slice Sag T2 TOP L. S. Spine MRI data. 

Another set of real MRI data representing fully sampled 3D fast spin-echo (FSE) knee MR 

images are also collected from (http://www.mridata.org). For comparisons with real MRI, 2D 

multi-slice brain MR images are simulated using the BrainWeb simulator 

(http://brainweb.bic.mni.mcgill.ca/brainweb) for performing various experiments. 

  

ii. Comparison of Reconstruction Algorithms 

Different relevant works on convex optimization are studied for implementation on CSMRI, 
viz. the Primal-Dual Interior Point Method (PDIPM), the Truncated Newton Interior-Point 
Method (TNIPM),  the Gradient Projection (GP) Method, the Iterative Shrinkage 
Thresholding Algorithm (ISTA), the Fast Iterative Shrinkage Thresholding Algorithm 
(FISTA), the Two-Step IST (TWIST), the Sparse Reconstruction by separable Approximation 
(SpaRSA), the Total Variation (TV) based algorithms,  the Projections Over Convex Set 
(POCS), the Gradient Projection for Sparse Reconstruction (GPSR), the Split Bregman 
Method, the Alternating Direction Method (ADM), and the Split Augmented Lagrangian 
Shrinkage Algorithm (SALSA). 

From recent studies on CSMRI, it is seen that the TV-L1-L2 model for MR image 

reconstruction from random undersampled data gives better results. The model is defined as 

follows: 

 2* 1
1 22 12

arg min u TV
    

x

x F x y Ψx x  

where x  is the MR image, y  is the measured Fourier data and uF  is the undersampling 

Fourier operator. Assume that x  has a sparse representation in the wavelet domain ( Ψ ). Some 

of the well known TV-L1-L2 model based CS reconstruction algorithms for MR image 

reconstruction are- 

 Total Variation L1 Compressed Sensing (TVCMRI), 2008 [1]. 

 Reconstruction from Partial Fourier data (RecPF), 2010 [2]. 

 Fast Composite Splitting Algorithm (FCSA), 2011 [3]. 

iii. Proposed High Throughput Reconstruction Technique for CS based MRI 
We have proposed a novel high throughput MR image reconstruction algorithm based on the 
TV-L1-L2 model. The experimental results show that the proposed method is quite efficient 
compared to the state-of-the-art MR image reconstruction techniques in terms of the CPU 
time and the quality of the reconstructed MR images. The average CPU time required for the 
proposed method is approximately 2-3 seconds per image for 20% sampling ratio when 
implemented in a PC equipped with Intel i7 processor with 2 GB RAM. 

iv. Proposed variable density undersampling pattern 

An incoherent aliasing artifact is an important criterion for CS reconstruction.  To increase 
the incoherency between the k-space and the sparse representation basis, we need to acquire 

Annexure-2 
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samples with a random under-sampling pattern. Due to the use of random undersampling 
pattern, reconstructed images would contain some visible artifacts which would be similar to 
white noise. This artifact appears in the MR Image due to the leakage of energy resulting 
from random undersampling and can be minimized during the reconstruction process by 
thresholding [4].  

In MRI, data acquisition process is performed in k-space. Centre region of the k-space 

contains information about gross structure and contrast of the original MR Image, most of the 

information required to produce the MR image. Accordingly, the peripheral region contains 

the spatial resolution information of MR image. Therefore, if the total numbers of samples are 

limited then we have to acquire more samples from the centre region and relatively less 

samples from the periphery.  

The proposed variable density sampling pattern known as the variable density Poisson disk 
sampling pattern mainly consists of several Poisson Disks arranged concentrically. The 
Poisson disk generates random points which have following properties- 

1. They are tightly packed together. 

2. They maintain a specified minimum distance between two neighbouring points. 

In Poisson disk, at first a grid is generated such that every cell contains at most one sampling 

point. If points are at least distance r  from each other, then cell size must be 2r . Therefore 

no two neighbouring points are too close. But points in the Poisson Disk sampling pattern are 

purely random in nature i.e. they contain the randomness property but also keep a minimum 

distance between two neighbouring points. 

v. Wavelet Tree Property  and Interpolated Compressed Sensing for Multi-slice MR Image 
Reconstruction  

It has been observed that sparse signal can be exactly reconstructed from highly 

undersampled linear measurements. In compressed sensing MRI, we can reconstruct good 

quality MR image with a small number of measurements because MR images are sparse in 

transform domain like the wavelet.  From recent studies [5], it has been observed that wavelet 

coefficients follow a quadtree structure for 2D image. In 2D images, wavelet filters are 

normally applied in both vertical and horizontal directions to produce four subbands, namely, 

the Low-Low (LL), the Low-High (LH), the High-Low (HL) and the High-High (HH) bands. 

Then only the LL band is iteratively decomposed to obtain the coarsest approximation band 

and a series of detail subbands at different resolutions. Since each subband represents a 

filtered and a subsampled version of the underlying image, coefficients of each subband are 

related to the original image. In other words we can say that in wavelet domain the children 

coefficient follows the property of the parent coefficients.  By utilizing this structural 

property of wavelet coefficients the quality of CSMRI reconstruction can be improved 

further.  

3D MRI is the best way to analysis the 3D anatomical structure. But due to the slow imaging 

process the conventional 3D MRI usually leads to impractical scan time.  Due to this reason, 

2D multi-slice MRI is used instead. In 2D multi-slice MRI, the anatomical variations in 



adjacent slices are vary less as they are highly correlated because a number of slices are 

acquired within a small volume. Therefore, we can estimate any intermediate slice from 

neighbouring slices. So, we can undersample adjacent slices non-uniformly and reconstruct 

good quality MR images by interpolating missing samples in a highly undersampled slice 

from neighbouring low undersampled slices using simple mathematics.  

This interpolation technique significantly reduces amount of total acquired data or 

measurements which in turn reduces the MRI scan time. We have proposed a fast 2D multi-

slice interpolation technique to estimate the relative missing samples of a highly 

undersampled slice from a neighbouring low undersampled slice. From the experimental 

results of nine adjacent slices we observe that the proposed interpolation technique is twenty 

times faster than the state-of-the-art. 
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